Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
LENGTH1(n__cons2(X, Y)) -> LENGTH11(activate1(Y))
ACTIVATE1(n__nil) -> NIL
LENGTH11(X) -> LENGTH1(activate1(X))
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
LENGTH1(n__cons2(X, Y)) -> S1(length11(activate1(Y)))
LENGTH11(X) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
LENGTH1(n__cons2(X, Y)) -> ACTIVATE1(Y)
FROM1(X) -> CONS2(X, n__from1(n__s1(X)))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(activate1(X1), X2)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
LENGTH1(n__cons2(X, Y)) -> LENGTH11(activate1(Y))
ACTIVATE1(n__nil) -> NIL
LENGTH11(X) -> LENGTH1(activate1(X))
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
LENGTH1(n__cons2(X, Y)) -> S1(length11(activate1(Y)))
LENGTH11(X) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
LENGTH1(n__cons2(X, Y)) -> ACTIVATE1(Y)
FROM1(X) -> CONS2(X, n__from1(n__s1(X)))
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(activate1(X1), X2)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 8 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1) = x1
n__cons2(x1, x2) = x1
n__from1(x1) = x1
n__s1(x1) = n__s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
Used argument filtering: ACTIVATE1(x1) = x1
n__cons2(x1, x2) = x1
n__from1(x1) = n__from1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
ACTIVATE1(n__cons2(X1, X2)) -> ACTIVATE1(X1)
Used argument filtering: ACTIVATE1(x1) = x1
n__cons2(x1, x2) = n__cons1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
LENGTH1(n__cons2(X, Y)) -> LENGTH11(activate1(Y))
LENGTH11(X) -> LENGTH1(activate1(X))
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
length1(n__nil) -> 0
length1(n__cons2(X, Y)) -> s1(length11(activate1(Y)))
length11(X) -> length1(activate1(X))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
nil -> n__nil
cons2(X1, X2) -> n__cons2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__nil) -> nil
activate1(n__cons2(X1, X2)) -> cons2(activate1(X1), X2)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.